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Letter to the Editor
Comments on ‘‘Constructal design of a thermoelectric

device”, IJHMT 49 (2006) 1420–1429

A recent publication applies the finite time thermody-
namics and constructal theory to study the distribution
of Joule heat going into the hot and cold sides of a TEG
and its consequences on optimal allocation of heat exchan-
ger inventory [1]. Nonetheless, the heat transfer model used
is incomplete and hence the main results and conclusions of
the paper concerning the Joule heat are questionable.
Based on a more complete formulation, we shall comment
one conclusion relevant to TEG constructal design meth-
odology published in Ref. [1] in this communication. The
conclusion involved is the causal relation between the con-
ductance allocation of external heat exchangers and the
Joule heat affecting the two junctions in Ref. [1]. In their
words, ‘‘the necessary and sufficient condition for equipar-
tition of Joulean heat produced is the equipartition of con-
ductance allocations between high temperature and low
temperature heat sources”.

The basic element of a real TEG module is a pair of
thermo-legs such as shown in Fig. 1 of [1]. Before the dis-
cussion of the heat transfer procedure of the single-couple
TEG, it is helpful to get a clear idea about the temperature
and heat flow distribution of either the n-type semiconduc-
tor leg or the p-type semiconductor leg, a generic conduc-
tive bar both thermally and electrically, as shown in
Fig. 2 of [1]. According to the thermal arrangements of
Fig. 4 of [1], where Thomson effect is neglected, the bar
is sandwiched between two thermally conducting but elec-
trically insulating heat exchangers mounted above and
below (KH and KL) (The symbols used here shall follow
the same meanings as in Ref. [1] unless otherwise stated.).
Consequently the external source of irreversibility is incor-
porated in the model, and the hot and cold sides of the bar
are open to the hot source TH and cold source TL through
KH and KL, respectively.

The first issue that needs to be considered is the temper-
ature and heat flow distribution in the bar when
THC = TLC. If the bar is adiabatic from the surroundings
except the heat flows at the two ends, as is assumed by [1],
it must be isothermal with the temperature boundary condi-
tion imposed when the current is absent. The temperature
distribution in the bar will be altered with a current flowing
in it. Roughly speaking, the temperature of bar will in-
crease. The reason of the temperature increase is that the
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doi:10.1016/j.ijheatmasstransfer.2007.06.002
Joule heat generated in the bar must flow towards both ends
by conduction, and as long as there is heat conduction,
there must be an accompanying temperature gradient.
According to the assumptions of Ref. [1] that the thermal
conductivity and electrical resistivity of the material are
constant, neglecting Thomson effect, the 1-D differential
equation governing the heat flow Q of the infinitesimal
element with a length of dx in the bar under steady state, is:

dQ ¼ Qðxþ dxÞ � QðxÞ ¼ I2q
dx
A

ð1Þ

where A is uniform cross-sectional area of the bar. Here the
plus direction of Q is defined as from THC to TLC, namely,
from x = 0 to x = L. It is clear that Eq. (1) applies to both
the plus heat flow and the minus heat flow. Hence the heat
flow of the two sides can be obtained as the following when
THC = TLC,

Qð0Þ ¼ KðT HC � T LCÞ �
I2R
2
¼ � I2R

2
ð2Þ

QðLÞ ¼ KðT HC � T LCÞ þ
I2R
2
¼ I2R

2
ð3Þ

by solving (1) and Fourier’s heat conduction equation.

QðxÞ ¼ �kA
dT ðxÞ

dx
ð4Þ

The sign in front of the Joule heat term of Eqs. (2) and (3)
represents the heat flow direction. So these two equations
show that, when THC = TLC, exactly half of the Joule heat
arrives at both hot and cold sides, and it is natural to imag-
ine that the maximum temperature should pass through the
geometrical center of the bar, namely, in the place
x = 0.5L. This postulate can be mathematically proven
from the temperature distribution function of the bar,

T ðxÞ ¼ � I2q

2kA2
x2 þ I2qL

2kA2
� ðT HC � T LCÞ

L

� �
xþ T HC ð5Þ

which is obtained also by solving the differential equation
(1) and Fourier’s heat conduction equation (4). The deriva-
tive of the parabolic temperature distribution function (5) is

dT ðxÞ
dx
¼ � I2q

kA2
xþ I2qL

2kA2
� ðT HC � T LCÞ

L
ð6Þ

Given the temperature boundary condition THC = TLC, the
solution of the location of maximum temperature in the
bar, obtained by setting Eq. (6) equal to zero, reads as
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x ¼ L
2
� kðT HC � T LCÞA2

I2qL
¼ L

2
ð7Þ

The Peltier heat exchange due to current passing dissim-
ilar materials needs not necessarily to be considered in the
foregoing 1-D analysis of the bar. When it is temporarily
neglected at the current stage, a heat flow diagram, which
offers a physical picture for this situation, is shown in
Fig. 1a. Based upon the heat transfer direction at the two
boundary points, x = 0 and x = L, one can easily draw
the conclusion that the temperatures of the both heat
sources TH and TL must be less than THC and TLC, respec-
tively; i.e., TH < THC and TL < TLC. If we assume an equi-
Fig. 1. Heat flow diagram of the conductive bar. (a) THC = TLC (b)
partition of the heat exchanger conductance, i.e., KH = KL,
then the temperatures of the two thermal reservoirs are
equal, that is, TH = TL.

The second question that must be considered is: if THC is
increased while TLC is kept at the original value, what will
happen after the system has stabilized? We limit the initial
change amount of the new temperature boundary condi-
tion to be tiny in order to allow another possible situation,
i.e., THC > TLC, but THC � TLC. Due to the fact that the in-
crease of THC is limited, the directions of the heat flow of
the two sides are not changed in terms of Eqs. (2) and
(3). These two equations also clearly disclose that, when
THC > TLC, the absolute value of the heat flow of the hot
THC > TLC, but THC � TLC (c) THC > TLC, and KDT P 0.5I2R.
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side Q(0) is less than half of the Joule heat, whilst the abso-
lute value of the heat flow of the cold side Q(L) is more
than half of the Joule heat. Regarding the location of max-
imum temperature in the bar, one can deduce that it should
move towards the hot side from the center, based on Eq.
(7), with the new temperature boundary condition
THC > TLC, that is, somewhere at x < 0.5L. The heat flow
diagram for this case is shown in Fig. 1b. The relations
TH < THC and TL < TLC still hold, but TH must be higher
than TL in case that KH is still equal to KL.

Provided that THC is increased to the extent that
K(THC � TLC) is equal to half of the Joule heat 0.5I2R, in
terms of Eqs. (2) and (3), the heat flow of the hot side
Q(0) will be decreased to zero and the heat flow of the cold
side Q(L) will be increased to I2R. So under this condition,
all the Joule heat generated in the bar flows to the cold side.
Since Q(0) = 0, TH must be equal to THC in terms of energy
conservation. If THC is further increased, the sign in front
of the Joule heat term in Eq. (2) will be changed from
minus to plus, which means that the direction of the heat
flow Q(0) is changed. Unlike those cases in Fig. 1a and b,
now the energy in the heat flow Q(0) is from the heat source
rather than the Joule heat. In other words, the heat flow _QH

from the heat source enters the bar by conduction, flows to
the cold side, and, together with the Joule heat I2R, consti-
tutes the heat flow of the cold side Q(L) and the heat flow
_QL going to the cold source. These two cases are summa-
rized in Fig. 1c.

Noting the fact that the temperature boundary condi-
tion THC and TLC can be changed by changing the external
conditions, by changing either the heat and cold sources
temperature TH and TL or the heat exchanger conductance
KH and KL, the effect of KH and KL on the Joule heat trans-
fer of the bar is at once clear: KH and KL are involved in
determining the temperature boundary condition THC

and TLC, which consequentially determines the proportion
of the Joule heat exactly flowing into the hot and cold end.
On the other hand, they have nothing to do with the pro-
portion of the Joule heat affecting the heat flow at the
hot and cold ends. Eqs. (2) and (3) are rigorous results of
a heat transfer analysis, and coefficient 0.5 in front of the
term I2R is always valid if only the material properties
are assumed constant.

The 1-D analysis results obtained so far apply directly
to both the p-type and the n-type semiconductor legs, and
enables us to proceed to the heat transfer issue of the sin-
gle-couple TEG, in which the two legs are connected elec-
trically in series by metal strips and a load Rl as is shown
in Fig. 1 of [1]. Q is redefined as the heat flow across the
whole TEG, the sum of heat flows through the two legs.
Accordingly, the definitions of K and R are also altered
from thermal conductance and electrical resistance of
the bar to those of the TEG. Thus Eqs. (2) and (3) still
hold.

The heat flow of a TEG, when operating in usual mode,
is similar to the case shown in Fig. 1c, except that there is
Peltier heat absorbed at the hot side and evolved at the cold
side of the device. The Peltier heat is in reality one part of
the heat flow boundary condition. The other part consists
of the input _QH and the output _QL. There is no doubt that
the incorporation of the separate components into the
boundary condition is appropriate. Hence, if the two Pel-
tier terms and the thermal conductance of the external heat
exchangers are incorporated, we have

_QH ¼ KHðT H � T HCÞ ¼ aT HCI þ KðT HC � T LCÞ �
I2R
2

ð8Þ

_QL ¼ KLðT LC � T LÞ ¼ aT LCI þ KðT HC � T LCÞ þ
I2R
2

ð9Þ

where a is the difference of Seebeck coefficients of the p-
and n-type materials. The only difference between Eqs.
(8), (9) and Eqs. (26–27) of Ref. [1] is the coefficient in front
of the Joule term I2R. The authors of Ref. [1] introduce two
new variables FH and FL to represent the fraction of Joule
heat entering into the hot and cold junction instead of the
coefficient 0.5. By including their Eq. (28) (FH + FL = 1),
they believe that they have three equations but four vari-
ables, THC, TLC, FH and FL. Hence, there can be a single
degree of freedom and they choose FH to be that one. After
a series of manipulations, they present a compilation, in
their Table 1, for the fraction of Joule heat distribution
for different combinations of conductance allocations of
KH and KL.

As we have proven, however, the values of KH and KL

do not have any effect on the fraction of Joule heat affect-
ing the hot and cold junctions. Different conductance
allocations can give different temperature boundary condi-
tions, which can in turn lead to different fractions of the
Joule heat exactly flowing into the hot and cold junctions.
But the coefficient 0.5 in front of I2R is the result of a
rigorous derivation and can never be changed as long as
that the material properties are assumed constant.

Actually, the equation system used in Ref. [1] is an
incomplete one. The authors ignore the important relation
to reflect the coupled behavior between electrical field and
thermal field of a TEG.

I ¼ a T HC � T LCð Þ
Rþ Rl

ð10Þ

With this constraint equation, the correct statement of the
problem should be: the system of Eqs. (8)–(10) has three
unknown variables THC, TLC and I rendering a unique
solution, which represents an operating state of the TEG.
Obviously, there is not any single degree of freedom ren-
dered. The equipartition of Joule heat does not demand
the equipartition of conductance allocations of the high
temperature and low temperature heat exchangers.

In terms of energy conservation, Eq. (28) of Ref. [1] is
always correct, even for the case that the thermal and
electrical material properties are not constant. If the mate-
rial properties are temperature dependent, or inhomoge-
neous elements are used, the Joule heat affecting the hot
and cold junctions will not be exactly one-half any longer
because the heat flow change in each leg is not linear any
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longer. But one still cannot say that there will be 4 equa-
tions for 5 unknowns, and hence a single degree of free-
dom. In the former case, the parameters a, R, and K

are dependent on the inside heat flow and temperature
distribution of a TEG. They become variables as well,
which can describe the TEG state, just like THC, TLC, I,
and the proportion of Joule heat affecting the both sides.
Such a treatment is difficult to be tackled analytically and
probably can only be done numerically. Some attempts to
find the solution by numerical methods have been pub-
lished [2,3].

Therefore, it turns out that the major result of Ref. [1]
about the relation between the conductance allocation
and the Joule heat is not correct. The mathematical efforts
of Ref. [1] to seek the so-called possible set of solutions
for the assumed unknown variable FH or FL, and
especially the contents in the Table 1, do not make any
sense.
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